Na,K-ATPase is essential for embryonic heart development in the zebrafish.

نویسندگان

  • Xiaodong Shu
  • Karen Cheng
  • Neil Patel
  • Fuhua Chen
  • Elaine Joseph
  • Huai-Jen Tsai
  • Jau-Nian Chen
چکیده

Na,K-ATPase is an essential gene maintaining electrochemical gradients across the plasma membrane. Although previous studies have intensively focused on the role of Na,K-ATPase in regulating cardiac function in the adults, little is known about the requirement for Na,K-ATPase during embryonic heart development. Here, we report the identification of a zebrafish mutant, heart and mind, which exhibits multiple cardiac defects, including the primitive heart tube extension abnormality, aberrant cardiomyocyte differentiation, and reduced heart rate and contractility. Molecular cloning reveals that the heart and mind lesion resides in the alpha1B1 isoform of Na,K-ATPase. Blocking Na,K-ATPase alpha1B1 activity by pharmacological means or by morpholino antisense oligonucleotides phenocopies the patterning and functional defects of heart and mind mutant hearts, suggesting crucial roles for Na,K-ATPase alpha1B1 in embryonic zebrafish hearts. In addition to alpha1B1, the Na,K-ATPase alpha2 isoform is required for embryonic cardiac patterning. Although the alpha1B1 and alpha2 isoforms share high degrees of similarities in their coding sequences, they have distinct roles in patterning zebrafish hearts. The phenotypes of heart and mind mutants can be rescued by supplementing alpha1B1, but not alpha2, mRNA to the mutant embryos, demonstrating that alpha1B1 and alpha2 are not functionally equivalent. Furthermore, instead of interfering with primitive heart tube formation or cardiac chamber differentiation, blocking the translation of Na,K-ATPase alpha2 isoform leads to cardiac laterality defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function of the α1B1 subunit of Na+,K+ ATPase during zebrafish heart development

Abstract Na,K ATPase is an essential ion pump involved in regulating ionic concentrations within epithelial cells. The zebrafish heart and mind (had) mutation which disrupts the α1B1 subunit of Na,K ATPase causes heart tube elongation defects and other developmental abnormalities that are reminiscent of several epithelial cell polarity mutants including nagie oko (nok) and heart and soul (has)....

متن کامل

Involvement of zebrafish Na+,K+ ATPase in myocardial cell junction maintenance

Na(+),K(+) ATPase is an essential ion pump involved in regulating ionic concentrations within epithelial cells. The zebrafish heart and mind (had) mutation, which disrupts the alpha1B1 subunit of Na(+),K(+) ATPase, causes heart tube elongation defects and other developmental abnormalities that are reminiscent of several epithelial cell polarity mutants, including nagie oko (nok). We demonstrate...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish.

Na(+)/K(+)-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na(+)/K(+)-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 i...

متن کامل

The α2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish.

The Na(+)/K(+)-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na(+)/K(+)-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na(+)/K(+)-ATPase associated with striated muscles and that knockdown causes a significant depolarization of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 130 25  شماره 

صفحات  -

تاریخ انتشار 2003